Abstract

The neuron-specific phosphoprotein B-50/GAP43 has been implicated in axonal outgrowth, since high levels of B-50/GAP43 are found in growth cones and during development of the nervous system. In adult brain, the B-50 levels are decreased. B-50 is primarily found in axons and presynaptic terminals. It is phosphorylated by protein kinase C, and this process has been implicated in the modulation of membrane signal transduction. During the outgrowth of the pyramidal tract, high levels of B-50 have been reported, whereas a low amount of B-50 persists into the adult stage. By immunoelectron microscopy, using immunogold labeling on cryosections and pre-embedding peroxidase labeling, we examined the distribution of B-50 in the pyramidal tract at the third cervical segment in developing 2-d-old and adult 90-d-old rats. B-50 immunoreactivity was found in axons and growth cones of the outgrowing tract. In the adult pyramidal tract, both unmyelinated and myelinated axons contained B-50 immunoreactivity. The immunogold label was predominantly located at the plasma membrane. Since the peroxidase reaction product was observed exclusively intracellularly, we conclude that the B-50 immunoreactivity is predominantly located at the cytoplasmic side of the plasma membrane of axons and growth cones. The high immunoreactivity in growth cones and axons of the outgrowing pyramidal tract further supports the hypothesis that B-50 plays a role in neurite outgrowth. The presence of B-50 in the adult pyramidal tract cannot merely be attributed to transport to the synapse. Therefore, it is suggested that B-50 plays, in addition, a local, growth-associated role in the adult tract.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.