Abstract

Resistive switching memory devices is a promising candidate for next generation data storage. The use of nontoxic and natural available biomaterials are prospective building block for environment friendly, biocompatible and biodegradable electronic devices. The fabrication and characterization of protein based Al/Azurin/ITO/PET flexible memory device is presented here. We observed significant bistable resistive switching behavior with long retention time and very good stability under bending stress at room temperature. The memory behavior originates due to the redox pair formation in the azurin, which corresponds to the low and high resistive states. This demonstration implies that the azurin protein is an active and useful biomaterial for nonvolatile memory and sustainable bioelectronics applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call