Abstract
Resistive switching memory devices is a promising candidate for next generation data storage. The use of nontoxic and natural available biomaterials are prospective building block for environment friendly, biocompatible and biodegradable electronic devices. The fabrication and characterization of protein based Al/Azurin/ITO/PET flexible memory device is presented here. We observed significant bistable resistive switching behavior with long retention time and very good stability under bending stress at room temperature. The memory behavior originates due to the redox pair formation in the azurin, which corresponds to the low and high resistive states. This demonstration implies that the azurin protein is an active and useful biomaterial for nonvolatile memory and sustainable bioelectronics applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.