Abstract

Abstract Design and synthesis of new organic functional materials with improved performance or novel properties are of great importance in the field of optoelectronics. Azulene, as a non-alternant aromatic hydrocarbon, has attracted rising attention in the last few years. Different from most common aromatic hydrocarbons, azulene has unique characteristics, including large dipole moment, small gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). However, the design and synthesis of azulene-based functional materials are still facing several challenges. This review focuses on the recent development of organic functional materials employing azulene unit. The synthesis of various functionalized azulene derivatives is summarized and their applications in optoelectronics are discussed, with particular attention to the fields including nonlinear optics (NLO), organic field-effect transistors (OFETs), solar cells, and molecular devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.