Abstract

Azole fungicides are widely used in the agricultural industry to control fungal infections in crops. However, recent studies have shown that some azole fungicides inhibit the activity of 3β-hydroxysteroid dehydrogenases (3β-HSDs) in the gonads. Out of the 16 azole fungicides tested, 8 were found to inhibit human KGN cell 3β-HSD2 with IC50 values of less than 100μM. The strongest inhibitor was difenoconazole, with an IC50 value of 1.88μM. In contrast, only 3 of the azole fungicides inhibited rat testicular 3β-HSD1, which was less sensitive to inhibition. Azole fungicides potently inhibited progesterone secretion by KGN cells under basal and forskolin stimulated conditions at ≥ 5μM. The inhibitory strength of azole fungicides was determined by their lipophilicity (LogP), molecular weight, pKa, and binding energy. A pharmacophore analysis revealed that the hydrogen bond acceptor-lipid group was a critical feature required for inhibition. Overall, these findings suggest that the use of azole fungicides have unintended consequences on reproductive health due to their inhibition of gonadal 3β-HSDs. Key words: Azole fungicides; steroid hormones; 3β-hydroxysteroid dehydrogenase; docking analysis; lipophilicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call