Abstract

Wastewater treatment plants (WWTPs) can be significant sources of antifungal resistant fungi, which can disseminate further in the environment by getting into rivers together with effluents discharged from WWTPs and pose a risk for human health. In this study, the presence of azole resistance was determined in fungal isolates from treated effluents of two WWTPs using the standard microdilution method from Clinical and Laboratory Standards Institute (CLSI). A total of 41 fungal isolates representing 23 fungal species and 16 fungal genera were obtained. Fungal genera related to the known human and/or plant pathogens such as Aspergillus, Fusarium, and Candida were detected. Among the observed species, the susceptibility of Aspergillus fumigatus and Fusarium oxysporum was tested against fluconazole (FCZ), ketoconazole (KTZ), itraconazole (ITZ), and voriconazole (VCZ). The isolate A. fumigatus was susceptible to KTZ, ITZ, and VCZ, while it showed resistance against FCZ. On the contrast, the isolate F. oxysporum showed resistance to KTZ, ITZ, and VCZ. Comparatively, VCZ showed highest activity against both A. fumigatus and F. oxysporum. Analysis of the gene Cyp51A for the A. fumigatus isolate showed no evidence of drug resistance that could be related to point mutations and/or tandem repeats in the gene. To the best of our knowledge, this is the first susceptibility test study on A. fumigatus and F. oxysporum isolates from the WWTPs of South Africa. In conclusion, this study indicated an urgent need for thorough investigation with larger group of fungal isolates from different regions of South Africa to broadly understand the role of WWTPs in the dissemination of azole antifungal drug resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call