Abstract
Azodicarboxamides (R(2)NCON=NCONR(2)) are shown to act as new templates for the assembly of unprecedented azo-functionalized hydrogen-bond-assembled [2]rotaxanes. Moreover, these binding sites can be reversibly and efficiently interconverted with their hydrazo forms through a hydrogenation-dehydrogenation strategy of the nitrogen-nitrogen bond. This novel chemically switchable control element has been implemented in stimuli-responsive molecular shuttles that work through a reversible azo/hydrazo interconversion, producing large amplitude net positional changes with a good discrimination between the binding sites of the macrocycle in both states of the shuttle. These molecular shuttles are able to operate by two different mechanisms: in a discrete mode through two reversible and independent chemical events and, importantly, in a continuous regime through a catalyzed ester bond formation reaction in which the shuttle acts as an organocatalyst. In this latter, the incorporation of both states of the shuttle into this simple chemical reaction network promotes a dynamic translocation of the macrocycle between two nitrogen and carbon-based stations of the thread allowing an energetically uphill esterification process to take place.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.