Abstract

A series of amorphous azobenzene and carbazole-containing polymers was prepared, which incorporates both electrooptic activity and photoconductivity into a single multifunctional structural unit. The polymers were cast as thin films and were shown to be suitable for photoinducing birefringence reversibly with polarized light, as well as for the inscription of photorefractive diffraction gratings after electric field poling. Since the polymer series encompasses a range of spacer lengths (from 3 to 10 methylene groups) between the multifunctional side chains and the polymer backbone, these materials are suitable for study of the influence of chromophore mobility on these optical phenomena. The extent of orientational order which could be photoinduced in the films was found to decrease with increasing spacer length, as did the photoconductivity and the photorefractive two-beam optical coupling gain. In thin films of polymers with the highest glass transition temperature, a birefringence of 0.065 could be photoinduced, with a time constant of <0.8 s. A two-beam optical gain of 0.024 µm-1 was also demonstrated in films of the polymer with the highest glass transition temperature, although this gain was exceeded by absorption losses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.