Abstract

A facile, general, and highly efficient approach to obtain azobenzene (azo)-containing molecularly imprinted polymer (MIP) microspheres with both photo- and thermoresponsive template binding properties in pure aqueous media is described for the first time, which involves the first synthesis of "living" azo-containing MIP microspheres with surface-immobilized alkyl halide groups via atom transfer radical precipitation polymerization (ATRPP) and their subsequent modification via surface-initiated atom transfer radical polymerization (ATRP) of N-isopropylacrylamide (NIPAAm). The successful grafting of poly(NIPAAm) (PNIPAAm) brushes onto the obtained MIP microspheres was confirmed by FT-IR, SEM, water dispersion stability and static contact angle studies, and template binding experiments. The introduction of PNIPAAm brushes onto the azo-containing MIP microspheres significantly improved their surface hydrophilicity and imparted thermoresponsive properties to them, leading to their pure water-compatible and thermoresponsive template binding properties. In addition, the binding affinity of the imprinted sites in the grafted azo-containing MIP microspheres was found to be photoresponsive toward the template in pure water, and this photoregulation process proved to be highly repeatable under photoswitching conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.