Abstract

This contribution focuses on a relatively old topic of azobenzene photomechanics, namely the photoinduced surface patterning. The phenomenon was demonstrated alreay in 1995, yet it has not redeemed its promise as a simple, one-step patterning method that could challenge the more conventional microfabrication techniques. However, inspired by recent advances in fabrication techniques, materials development, and theoretical modelling, the field is going through a revival from both fundamental and applied perspectives. (i) How much (or how little) azobenzene needed in order to create the surface patterns? (ii) What is the maximum size of objects that can be moved with light? (iii) Can one pattern crystalline materials? (iv) Under what conditions ss the patterning process light-reversible? These questions will herein be addressed via four case studies, all employing supramolecular materials where non-covalent intermolecular interactions are used to attach the azobenzenes into a passive host matrix. All azobenzene-based material movements are triggered by photoisomerization and are therefore inherently related to one another, and therefore we believe our observations to provide useful insights also for photomobile materials and photomechanical actuation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.