Abstract
This is the first report of phase properties and photoisomerization behaviour of a series of amphiphilic azobenzene-imidazolium derivatives. The cationic imidazolium moiety was functionalised with varying alkyl chain length (C10-C18) and connected to an azobenzene via a flexible ether spacer. Their phase transitional properties and photoisomerization in solution were modulated by the alkyl chains in the imidazolium moiety. C14 was the shortest chain length to induce the formation of a liquid crystal phase, wherein compounds having C14-C18 exhibited stable smectic A phase. All compounds photo switched from trans-to-cis isomers in solution when illuminated with UV radiation. DFT calculations revealed that the trans isomers could adopt two geometries, however, folded geometry (global minima) was thermodynamically more stable than the open chain structure. The long conjugate (C16) had a higher trans-cis isomerization barrier due to the multilayer folding geometry that reduced its structural flexibility as compared to the C10 homologue. The photo conversion efficiency (CE) was alkyl chain length dependent. The C10 salt had a larger CE than C16 homologue due to the transition gap between S1 excited state and ground surface is smaller in the former (0.211 eV) than that in the latter (0.278 eV), thus resulting in efficient photoisomerization in the former.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.