Abstract

AbstractCovalent organic frameworks (COFs) have been demonstrated as promising photocatalysts for hydrogen peroxide (H2O2) production. However, the construction of COFs with new active sites, high photoactivity, and wide‐range light absorption for efficient H2O2 production remains challenging. Herein, we present the synthesis of a novel azobenzene‐bridged 2D COF (COF‐TPT‐Azo) with excellent performance on photocatalytic H2O2 production under alkaline conditions. Notably, although COF‐TPT‐Azo differs by only one atom (−N=N− vs. −C=N−) from its corresponding imine‐linked counterpart (COF‐TPT‐TPA), COF‐TPT‐Azo exhibits a significantly narrower band gap, enhanced charge transport, and prompted photoactivity. Remarkably, when employed as a metal‐free photocatalyst, COF‐TPT‐Azo achieves a high photocatalytic H2O2 production rate up to 1498 μmol g−1 h−1 at pH = 11, which is 7.9 times higher than that of COF‐TPT‐TPA. Further density functional theory (DFT) calculations reveal that the −N=N− linkages are the active sites for photocatalysis. This work provides new prospects for developing high‐performance COF‐based photocatalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.