Abstract

Detection of endogenous CO (carbon monoxide) is an interesting topic in biology because it has been discovered as a messenger for signal transduction and therapeutic effects in vital biological activities. Fluorescence imaging has proven a powerful tool for detecting endogenous CO, which drives the development of low-cost and easy-to-use fluorescent probes. In this study, four azobenzene derivatives (A1, A2, A3, and A4) with various substituents were reported, including their geometric structures, photophysical parameters, and spectral responses to Cu2+ and CO. The relationship between substituent structure and performance was discussed along with Cu2+ quenching and CO sensing mechanisms. The optimal probe (A1), which had no substituent, efficiently quenched fluorescence in the presence of Cu2+, with its PLQY decreased from 0.33 to 0.02, PLQY = photoluminescence quantum yield. Upon CO deoxidization, A1′s fluorescence could be recovered (PLQY recovered to 0.32) within 180 s. Its sensing mechanism was static by forming a non-fluorescent complex with Cu2+ (with a stoichiometric ratio of 1:1). The bioimaging performance of A1 for endogenous CO in HeLa cells was reported.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call