Abstract

A new category of five KBBF-analogy nonlinear optical (NLO) materials, AZn2BO3X2 (A = K, Rb, NH4; X = Cl, Br), are developed by the tetrahedron substitution of BeO3F for ZnO3X from KBe2BO3F2 (KBBF). They preserve the structural merits of KBBF, consisting of the infinite planar [Zn2BO3X2]∞ layers. Optical measurements on this series of NLO crystals reveal that they are phase-matchable in the visible and UV region with powder second-harmonic generation (SHG) responses being more than twice that of isostructural KBBF. First-principles calculations and atom-cutting analysis were carried out to demonstrate that enhanced SHG response originates from the cooperative effect of coparallel [BO3] triangles and distorted ZnO3Cl/Br tetrahedra. The theoretical calculations and experimental results show that AZn2BO3X2 exhibits a less-developed layer habit compared with KBBF. Especially, because of the existence of relatively strong hydrogen bond between NH4+ groups and [Zn2BO3Cl2]∞ layers, NH4Zn2BO3Cl2 crystal exhibits ...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.