Abstract

The present study shows that a sub-MIC of the macrolide antibiotic azithromycin (AZM) diminishes the virulence function of Salmonella enterica serovar Typhimurium. We first constructed an AZM-resistant strain (MS248) by introducing ermBC, an erythromycin ribosome methylase gene, into serovar Typhimurium. The MIC of AZM for MS248 exceeded 100 microg/ml. Second, we managed to determine the efficacy with which a sub-MIC of AZM reduced the virulence of MS248 in vitro. On the one hand, AZM (10 microg/ml) in the culture medium was unable to inhibit the total protein synthesis, growth rate, or survival within macrophages of MS248. On the other hand, AZM (10 microg/ml) reduced MS248's swarming and swimming motilities in addition to its invasive activity in Henle-407 cells. Electron micrographs revealed no flagellar filaments on the surface of MS248 after overnight growth in L broth supplemented with AZM (10 microg/ml). However, immunoblotting analysis showed that flagellin (FliC) was fully synthesized within the bacterial cells in the presence of AZM (10 microg/ml). In contrast, the same concentration of AZM reduced the export of FliC to the culture medium. These results indicate that a sub-MIC of AZM was able to affect the formation of flagellar filaments, specifically by reducing the amount of flagellin exported from bacterial cells, but it was not involved in suppressing the synthesis of flagellin. Unfortunately, AZM treatment was ineffective against murine salmonellosis caused by MS248.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.