Abstract
Definitive conclusions regarding the antiinflammatory effects of macrolide antibiotics for treatment of asthma are difficult to formulate since their beneficial effects may be related to their antimicrobial action. We hypothesized that azithromycin possesses distinct antiinflammatory properties and tested this assumption in a noninfectious mouse model of allergic asthma. To induce allergic airway inflammation, 7-week-old BALB/cJ mice underwent intraperitoneal ovalbumin sensitization on days 0 and 7 followed by an intranasal challenge on day 14. Mice were treated with azithromycin or phosphate-buffered saline (PBS) solution on days 13 through 16. On day 17, airway inflammation was assessed by quantifying leukocytes in the airway, expression of multiple inflammatory mediators in the BAL fluid, and mucous cell metaplasia. In a separate set of experiments, azithromycin or PBS solution treatment were initiated after the ovalbumin challenge. Each experiment was repeated 3 times (a total of 9 to 11 mice in each group). Compared to treatment with PBS solution, azithromycin attenuated the ovalbumin-dependent airway inflammation. We observed a decrease in total leukocytes in the lung tissue and BAL fluid. In addition, azithromycin attenuated the expression of cytokines (eg, interleukin [IL]-13 and IL-5) and chemokines (eg, CCL2, CCL3, and CCL4) in the BAL fluid and abrogated the extent of mucous cell metaplasia. Similar antiinflammatory effects were observed when azithromycin treatment was initiated after the ovalbumin challenge. In this noninfectious mouse model of allergic asthma, azithromycin attenuated allergic airway inflammation. These findings demonstrate an antiinflammatory effect of azithromycin and suggest azithromycin may have beneficial effects in treating noninfectious airway inflammatory diseases, including asthma.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.