Abstract

The synthesis of aziridine-functionalized mesoporous silica membranes on polymeric hollow fibers is described, and their single-component CO2 and N2 permeation properties are investigated under both dry and humid conditions to elucidate the unusual permeation mechanisms observed in these membranes. Hollow fiber-supported mesoporous silica membranes are amine-functionalized with aziridine to yield hyperbranched aminopolymers within the membrane pores. The effects of the hyperbranched polymers in the mesopores on gas transport properties are investigated by single-component gas permeation measurements. The hyperbranched aminosilica membrane shows counterintuitive N2-selective (over CO2) permeation during operation under dry conditions. Further characterization of the permeation behavior reveals the effects of strong adsorption of CO2 under dry permeation conditions, leading to reduced CO2 diffusivity because of CO2-induced amine cross-linking in the mesopores. On the other hand, the hyperbranched aminosilic...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.