Abstract

Single crystal X-ray structure-characterized azine derivative (L) was explored for the selective detection of molybdenum (Mo(vi)) cations through green fluorescence emission. The Mo(vi) cation assisted inhibition of photo-induced electron transfer (PET) resulted in a 37-fold fluorescence enhancement via chelation enhanced fluorescence (CHEF) that allows detection of Mo(vi) with concentration as low as 2 × 10-9 M. The chelation of Mo(vi) cations by L has been confirmed by the single crystal X-ray structure of the resulting complex. The binding constant of L for Mo(vi) is fairly high (1.33 × 106 M-1). Moreover, L is very efficient for enrichment of Mo(vi) from aqueous solution. Density functional theoretical (DFT) studies substantiate the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.