Abstract

We have exposed an emulsion chamber with an area of 1.22 m 2 on board of the balloon at an atmospheric depth of 8.9 g/cm 2 for 15.8 h, which has been azimuthally controlled within the accuracy of Δφ = 0.5°. With the use of the east-west asymmetry effect of arriving cosmic-ray primaries, we can obtain the energy spectra for individual elements in the kinetic energy range from a few GeV/nucleon up to ∼ 15 GeV/nucleon. We present also the energy spectra obtained by the opening-angle method for the higher energy region, 5–1000 GeV/nucleon, for the elements not lighter than silicon. We find that the energy spectra obtained by the former method continue smoothly to those obtained by the latter, indicating that the energy determination using the opening-angle method is performed correctly. We compare also the present results with those obtained by the previous work. We find that the iron flux is in nice agreement with that obtained by the previous observation, the differential spectral index being constant, ∼ 2.5, up to a few TeV/nucleon, while in the case of the silicon component, it is ∼ 2.7 for 10–1000 GeV/nucleon in this work, significantly harder than the previous one, ∼ 2.9. We also report the flux of the sub-iron component and its abundance ratio to the iron component. We find the abundance ratio of [Z = 21–25]/iron is slightly less than those obtained previously in the higher energy region, ≳ 100 GeV/n.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.