Abstract
Hydraulic fracturing, routinely applied for enhancing the permeability of unconventional oil and gas reservoirs, is one of the possible causes for azimuthal anisotropy of the treated formations. Accounting for both naturally occurring and completion induced azimuthal anisotropy leads to marked improvements in the results of microseismic data processing. As illustrated on a data set acquired in the Bakken Field, North Dakota, USA, those improvements include the possibility of modeling the observed shear-wave splitting, reduction of misfit between the picked and modeled traveltimes of microseismic events, and relocation and tightening of the spatial distribution of the event hypocenters. In addition and perhaps most importantly for the development of microseismic technology, the feasibility of joint inversion of field microseismic data for the event locations and azimuthally anisotropic velocity model containing triclinic layers is demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.