Abstract

In this paper, we proposed an azimuth-range decouple-based L1 regularization method for wide ScanSAR imaging via extended chirp scaling (ECS) and applied it to the TerraSAR-X data to achieve large-scale sparse reconstruction. Compared with ECS, the conventional ScanSAR imaging algorithm based on matched filtering, the proposed method can improve the synthetic aperture radar image performance with full-sampling raw data for not only sparse but also nonsparse surveillance regions. It can also achieve high-resolution imaging for sparse considered scenes efficiently using down-sampling raw data. Compared with a typical L1 regularization imaging approach, which requires transfer of the two-dimensional (2-D) echo data into a vector and reconstruction of the scene via 2-D matrix operation, our proposed method has less computational cost and hence makes the large-scale regularization reconstruction of considered area become possible. The experimental results via real data validate the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call