Abstract

Synthetic aperture radar (SAR) systems with multiple receive channels allow for high-resolution wide-swath imaging thus overcoming a fundamental limitation of conventional single-aperture SAR. By using multiple apertures in azimuth, additional samples are received for each transmitted pulse. This allows for a reduced pulse repetition frequency (PRF) thereby enabling a wider swath. However, a nonoptimum PRF is associated with a nonuniform sample spacing in azimuth and needs to be compensated by a multichannel reconstruction algorithm. For strong deviations from the optimum PRF, the inverse character of such an algorithm might result in a degraded performance. This can be overcome by an innovative advanced transmit antenna architecture which allows for a pulse-to-pulse shift of the phase center. Such an antenna enables the adaptive adjustment of the system's phase center positions to the respective PRF, thereby ensuring constant performance over a clearly extended PRF range. In particular, in combination with conventional multichannel processing strategies, this technique represents the next step toward a fully active multiple-input multiple-output (MIMO) SAR and has a great potential for future systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.