Abstract
Azimuth multichannel is a promising technique of realizing high resolution and wide swath for synthetic aperture radar (SAR) imaging, which consequently leads to extremely high data rate on satellite downlink system and confronts serious ambiguity in subsequent processing due to its strict limitation of pulse repetition frequency (PRF). Ambiguity suppression performance of conventional spectrum construction is disappointing when the samples are approximately overlapped. To overcome these weaknesses, a novel sparse sampling scheme for displaced phase center antennas based on compressed sensing (CS) is proposed in this paper. The imaging strategy sparsely sampled in both range and azimuth direction, leading to a signiflcant reduction of the system data amount beyond the Nyquist theorem, and then operated the CS technique in two dimensions to accomplish target reconstruction. Efiectiveness of the proposed approach was validated through simulation and real data experiment. Simulation results and analysis indicated that the new imaging strategy could provide several favorable capability than conventional imaging algorithm such as less sampled data, better ambiguity suppression, higher resolution, and lower integrated side- lobe ratio (ISLR).
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.