Abstract

A series of Cu(II) complexes, 1-4 and 6, were synthesized through a reaction of amine-functionalized pincer-like ligands, HL1,2, La,b, and a bidentate ligand L1 with CuCl2·2H2O. The chemical reduction of complex 1 using 1 equiv of sodium l-ascorbate resulted in a dimeric Cu(I) complex 5 in excellent yield. All of the complexes, 1-6, were thoroughly characterized using various physicochemical characterization techniques, single-crystal X-ray structure determination, and density functional theory calculations. Ligands HL1,2 and La,b behaved as tridentated donors by the coordination of the amine side arm in their respective Cu(II) complexes, and the amine side arm remained as a pendant in Cu(I) complexes. All of these complexes (1-6) were explored for copper(I)-catalyzed 1,3-dipolar azide-alkyne cycloaddition (CuAAC) reaction at room temperature in water under air. Complex 5 directly served as an active catalyst; however, complexes 1-4 and 6 required 1 equiv of sodium l-ascorbate to generate their corresponding active Cu(I) catalyst. It has been observed that azo-based ligand-containing Cu(I)-complexes are air-stable and were highly efficient for the CuAAC reaction. The amine side arm in the ligand backbone has a dramatic role in accelerating the reaction rate. Mechanistic investigations showed that the alkyne C-H deprotonation was the rate-limiting step and the pendant amine side arm intramolecularly served as a base for Cu-coordinated alkyne deprotonation, leading to the azide-alkyne 2 + 3 cycloaddition reaction. Thus, variation of the amine side arm in complexes 1-4 and use of the most basic diisopropyl amine moiety in complex 4 has resulted in an unique amine-functionalized azoaromatic Cu(I) system for CuAAC reaction upon sodium l-ascorbate reduction. The complex 4 has shown excellent catalysis at its low parts-per-million level loading in water. The catalytic protocol was versatile and exhibited very good functional group tolerance. It was also employed efficiently to synthesize a number of useful functional triazoles having medicinal, catalytic, and targeting properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.