Abstract
Capsaicin, a prototypic transient receptor potential vanilloid 1 (TRPV1) agonist, has been shown to be more clinically effective in the treatment of nonallergic rhinitis (NAR) compared with other rhinitis subtypes. Azelastine has also been found to be clinically effective in the treatment of NAR but its mechanism(s) of action is still poorly elucidated. This study was designed to determine, using in vitro cell lines, whether topical therapies including azelastine have activity on TRPV1 ion channels similar to capsaicin. The effects of capsaicin (1 μM), azelastine (30 μM), bepotastine (10 μM), olopatadine (10 μM), and fluticasone (200 μM) on TRPV1 channels using mice neuronal cells (Cath.a), as surrogates for submucosal sensory neurons, and human nasal epithelial cells (hNEC) were determined and compared. For azelastine, bepotastine, and capsaicin, which elicited an agonist effect on TRPV1, live cell [Ca(2+)] signaling in Cath.a cells and hNECs expressing TRPV1 were performed in the absence and presence of capsazepine at 10 μM (a TRPV1 antagonist) or using wild-type mouse embryonic fibroblasts (wtMEFs) that express TRPV1 ion channels and TRPV1 homozygous null mutant (TRPV1-/-) knockout MEF cells as controls to establish TRPV1 channel selectivity. As azelastine has previously been found clinically effective in NAR, additional experiments were performed to determine its ability to desensitize TRPV1 ion channels and its effect on regulating intracellular calcium homeostasis. Cath.a cells treated with azelastine, bepotastine, or capsaicin showed a significant increase in TRPV1-dependant (Ca(2+)) specific cytosolic fluorescence. Continuous treatment with azelastine or capsaicin resulted in desensitization of TRPV1 channels. In hNECs, azelastine stimulation resulted in Ca(2+) shifts from the cytosol to mitochondria and overexpression of hematopoietic cell-specific Lyn substrate 1-associated protein X1, which may thus be effective in cytosolic Ca(2+) homeostasis. Azelastine, similar to capsaicin, exhibits direct activity on TRPV1 ion channels that may represent a novel mechanistic pathway explaining its clinical efficacy in NAR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.