Abstract

The synthesis and characterization of heptagon-embedded polycyclic aromatic compounds are essential for understanding the effect of negative curvature on carbon allotropes such as fullerenes and graphenes that have applications in functional organic materials. However, owing to the synthetic difficulties in functionalizing and embedding seven-membered rings, these strain-challenged structures are relatively unexplored. We report here the synthesis, characterization, and properties of a triarylamine core bridged with ethano chains at the 2,2'-positions. In doing so, we provide access to the first heterocycle containing three fused heptagon rings with a nitrogen at its core (BATA-NHAc). X-ray crystallographic analysis and DFT calculations revealed a remarkably strained structure wherein two of the bridged aryl units approach coplanarity, while the third ring is twisted out of plane at 70°. UV-vis and emission spectroscopies identify red-shifted absorption and concentration-dependent emission profiles, respectively, as a result of the unique conformation and self-assembly properties of BATA-NHAc. Furthermore, cyclic voltammetry shows a decrease in the oxidation potential for BATA-NHAc in comparison to the non-bridged analog. This study opens new avenues in understanding the structure-property relationships of curved π-aromatics and the construction of π-frameworks of increasing complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.