Abstract

Management of hematologic disease- and therapy-related thrombocytopenia remains a serious clinical issue, especially in patients with myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML). The ribonucleoside and DNA-demethylating agent azacytidine (AZA), has proven useful for the treatment of patients with MDS and AML not eligible for stem cell transplantation. While low-dose AZA therapy induces clinical remissions in up to 50% of treated patients, it comes at the cost of aggravating pre-existing thrombocytopenia which is observed in a subset of patients; this can lead to increased bleeding and bleeding-associated mortality, and importantly, often requires dose modifications and delays of therapy. Thus, identification of strategies alleviating ineffective megakaryopoiesis will likely lead to increased therapeutic efficacy for patients with MDS/AML. Eltrombopag (EP), a second-generation small molecule thrombopoietin receptor (TPO-R) agonist was effective in raising platelet counts in patients with MDS as a single agent, as well as in combination with certain standard of care therapies. However, it failed to stimulate platelet production during the first four cycles of AZA treatment as uncovered by a recent phase III placebo-controlled clinical study (SUPPORT; NCT02158936). The goals of this study were to identify the cellular and molecular underpinnings of AZA-associated inhibition of megakaryopoiesis and to assess the ineffectiveness of EP in mitigating AZA treatment-associated thrombocytopenia. Our results demonstrate that at a clinically-equivalent and non-cytotoxic dose, AZA rapidly induces transient activation of interferon type I (IFN-I) signaling in various hematopoietic cell types, including stem and lineage-committed progenitor cells (HSPCs). We detected IFNα and IFNβ production and release using ELISA and intracellular flow cytometry on primary total mononuclear cell- and purified CD34-positive HSPC populations derived from cord blood, bone marrow from healthy volunteers or patients with MDS/AML. AZA-mediated activation of Type I IFNs in healthy control- and MDS/AML cells was preceded by an accumulation of double-stranded RNA (dsRNA) species and decreased total RNA cytosine methylation measured by immunocytochemistry and intracellular FACS analysis; this suggested that AZA triggered the accumulation of immunogenic RNA species which elicit an IFN-I response. In support, we found Toll like receptor 3 (TLR3) activation and phosphorylation of STAT1 in CD34+ HPSC, along with premature activation of Suppressor of Cytokine Signaling 1 (SOCS1), a well-known JAK/STAT-dependent signaling attenuator. This rapid AZA-induced viral mimicry response led to abrogation of thrombopoietin (TPO) or EP-stimulated TPO-R signaling and inhibition of ex vivo megakaryocyte progenitor proliferation quantified by colony formation in semi-solid medium. Importantly, inhibition of IFN-I signal activation using the JAK3 inhibitor decernotinib, the IFNα/β-blocking peptide, B18R, or RNA interference-mediated knock-down of SOCS1 counteracted the inhibitory effects of AZA on TPO-R stimulation and restored megakaryopoiesis. Given these observations, we pre-clinically tested a revised treatment protocol, in which primary cells were first exposed to AZA for four days followed by TPO-R stimulation using TPO or EP. This new treatment strategy alleviated AZA's inhibitory effects at the molecular and cellular levels, demonstrating that upon resolution of the AZA-mediated vial mimicry response, EP and TPO can effectively stimulate TPO-R signaling and megakaryopoiesis. Together, our data reveal a mechanistic basis of AZA-mediated inhibition of megakaryopoiesis in patients with MDS/AML. Additionally, we show that EP cannot overcome the megakaryopoiesis-inhibitory effects of acute IFN-I signaling activation upon AZA exposure. Findings of our study are consistent with and provide a molecular explanation for the observations made in the context of the SUPPORT study. In the future, it will be critical to better understand and potentially counteract the megakaryopoiesis-inhibitory effects by IFN-I pathway activation upon AZA therapy in patients with MDS/AML. Disclosures Okoye-Okafor: Novartis Pharmaceuticals: Research Funding. Pallaud:Novartis Pharmaceuticals: Employment. Marques Ramos:Novartis Pharmaceuticals: Employment. Verma:Janssen: Research Funding; BMS: Research Funding; Celgene: Honoraria; Stelexis: Equity Ownership, Honoraria; Acceleron: Honoraria. Heckman:Celgene: Research Funding; Novartis: Research Funding; Oncopeptides: Research Funding; Orion Pharma: Research Funding. Will:Novartis Pharmaceuticals: Research Funding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.