Abstract

The direct use of dinitrogen (N2) as a building block for the synthesis of NN-containing organic compounds is of fundamental interest and practical importance but has remained a formidable challenge to date. Here, we report an unprecedented 1,4-conjugate (aza-Michael) addition of N2 to α,β-unsaturated carbonyl compounds in a dititanium framework. The resulting hydrazinopropenolate products could be easily converted to diverse NN-containing organic compounds such as β-hydrazine-functionalized esters and amides, pyrazolidinones, and pyrazolines depending on the types of Michael acceptors through protonation with MeOH. Further transformations of a hydrazinopropenolate titanium complex through C-C and N-C bond formations with electrophiles such as CO2 and benzaldehyde have also been achieved. The mechanistic details of the N2 addition reaction have been elucidated by computational studies, revealing the importance of redox-active metal centers in this event. This work showcases the potential of using N2 as a building block for the synthesis of NN-containing organic compounds through activation and functionalization in a molecular metal framework.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call