Abstract

This paper presents a new forming technology for manufacturing the AZ31 magnesium alloy thin-wall tube. The direct extrusion process and continuous shearing-bending process are combined to produce thin-wall magnesium tube, abbreviated as “TESB” (tube extrusion-shearing-bending). The process has been studied based on the combination of experiments and numerical simulations, and the influences of temperatures, extrusion stresses, and friction factors on the forming process have been studied by Deform-3D simulation. And the mechanical properties and the grain size of the formed product have been tested. TESB technology has been proved to refine the grains of magnesium alloy tube effectively, and the mechanical property of the product can be improved. The better experimental extrusion conditions were also obtained by simulation, and the properties of the products under the condition of lubrication were better when the temperature was 400°C. Three-dimensional finite element modeling is used to investigate the plastic deformation behaviors of wrought magnesium alloy during TESB process. Numerical results indicate TES could increase the cumulative strains effectively by direct extrusion and additional shearings. Experiments show that microstructures of magnesium alloy fabricated by TESB process can be refined to 50% of the original grain size with more uniform distribution. TES process could improve hardness of magnesium alloy obviously by comparing with which fabricated by direct extrusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call