Abstract

The latest advancements in oncology are majorly focused on immuno-oncology (I-O) therapies. However, only ∼7% of drugs are being approved from the preclinical discovery phase to phase 1. The most challenging issues in I-O are the development of active and efficient drugs in an economically feasible way and in a comparatively short time for testing and validation. This mandates an urgent need for the upgradation of preclinical screening models that closely mimic the in vivo tumor microenvironment (TME). The established and most common methods for investigating the tumoricidal activity of I-O drugs are either two-dimensional systems or primary tumor cells in standard tissue culture vessels. Unfortunately, they do not mimic the TME. Consequently, the more in vivo-like three-dimensional (3D) multicellular tumor spheroids are quickly becoming the favored model to examine immune cell-mediated responses in reaction to the administration of I-O drugs. Despite many advantages of multicellular spheroids, challenges (e.g., incompatibility of quantitative assays with spheroid platforms) are still involved in the tedious procedures required for the spheroid culture that is holding back the biological community from adapting the well-recognized spheroid tissue models for studying drug delivery more widely. To this end, we have demonstrated the utility of the 3D ex vivo oncology model, developed on our novel AXTEX-4D™ platform to assess therapeutic efficacies of I-O drugs by investigating immune cell proliferation, migration, infiltration, cytokine profiling, and cytotoxicity of tumor tissueoids. The platform eliminates the need for additional biomolecules such as hydrogels and instead relies on the cancer cells themselves to create their own gradients and microenvironmental factors. In effect, the more comprehensive and ex vivo-like immune-oncology model developed on AXTEX-4D platform can be utilized for high-throughput screening of immunotherapeutic drugs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.