Abstract
BackgroundHere, we present a semi-automated method for quantifying retinal ganglion cell (RGC) axon density at different distances from the optic nerve crush site using longitudinal, confocal microscopy images taken from whole-mounted optic nerves. This method employs the algorithm AxonQuantifier which operates on the freely available program, ImageJ. New methodTo validate this method, seven adult male Long Evans rats underwent optic nerve crush injury followed by in vivo treatment with electric fields of varying strengths for 30 days to produce optic nerves with a wide range of axon densities distal to the optic nerve crush site. Prior to euthanasia, RGC axons were labelled with intravitreal injections of cholera toxin B conjugated to Alexa Fluor 647. After dissection, optic nerves underwent tissue clearing, were whole-mounted, and imaged longitudinally using confocal microscopy. Comparison with existing methodsFive masked raters quantified RGC axon density at 250, 500, 750, 1000, 1250, 1500, 1750, and 2000 µm distances past the optic nerve crush site for the seven optic nerves manually and using AxonQuantifier. Agreement between these methods was assessed using Bland-Altman plots and linear regression. Inter-rater agreement was assessed using the intra-class coefficient. ResultsSemi-automated quantification of RGC axon density demonstrated improved inter-rater agreement and reduced bias values as compared to manual quantification, while also increasing time efficiency 4-fold. Relative to manual quantification, AxonQuantifier tended to underestimate axon density. ConclusionsAxonQuantifier is a reliable and efficient method for quantifying axon density from whole mount optic nerves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.