Abstract
Immunoglobulin/fibronectin type III-like cell adhesion molecules have been implicated in axon pathfinding based on their expression pattern in the developing nervous system and on their complex interactions described in vitro. The present in vivo study demonstrates that interactions by two of these molecules, axonin-1 on commissural growth cones and Nr-CAM on floor plate cells, are required for accurate pathfinding at the midline. When axonin-1 or Nr-CAM interactions were perturbed, many commissural axons failed to cross the midline and turned instead along the ipsilateral floor plate border. In contrast, though perturbation of Ng-CAM produced a defasciculation of the commissural neurites, it did not affect their guidance across the floor plate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.