Abstract

Axonemal dyneins form the inner and outer rows of arms associated with the doublet microtubules of motile cilia. These enzymes convert the chemical energy released from adenosine triphosphate (ATP) hydrolysis into mechanical work by causing the doublets to slide with respect to each other. Dyneins form two major groups based on the number of heavy-chain motors within each complex. In addition, these enzymes contain other components that are required for assembly of the complete particles and/or for the regulation of motor function in response to phosphorylations status, ligands such as Ca2+, changes in cellular redox state and which also apparently monitor and respond to the mechanical state or curvature in which any given motor finds itself. It is this latter property, which is thought to result in waves of motor function propagating along the axoneme length. Here, I briefly describe our current understanding of axonemal dynein structure, assembly, and organization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.