Abstract

In this study, we describe the phenotypic spectrum of distal hereditary motor neuropathy caused by mutations in the small heat shock proteins HSPB1 and HSPB8 and investigate the functional consequences of newly discovered variants. Among 510 unrelated patients with distal motor neuropathy, we identified mutations in HSPB1 (28 index patients/510; 5.5%) and HSPB8 (four index patients/510; 0.8%) genes. Patients have slowly progressive distal (100%) and proximal (13%) weakness in lower limbs (100%), mild lower limbs sensory involvement (31%), foot deformities (73%), progressive distal upper limb weakness (29%), mildly raised serum creatine kinase levels (100%), and central nervous system involvement (9%). We identified 12 HSPB1 and four HSPB8 mutations, including five and three not previously reported. Transmission was either dominant (78%), recessive (3%), or de novo (19%). Three missense mutations in HSPB1 (Pro7Ser, Gly53Asp, and Gln128Arg) cause hyperphosphorylation of neurofilaments, whereas the C-terminal mutant Ser187Leu triggers protein aggregation. Two frameshift mutations (Leu58fs and Ala61fs) create a premature stop codon leading to proteasomal degradation. Two mutations in HSPB8 (Lys141Met/Asn) exhibited increased binding to Bag3. We demonstrate that HSPB1 and HSPB8 mutations are a major cause of inherited motor axonal neuropathy. Mutations lead to diverse functional outcomes further demonstrating the pleotropic character of small heat shock proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.