Abstract

Repetitive mild traumatic brain injury (rmTBI) is one of the leading causes of cognitive disorders. The impairment of axonal integrity induced by rmTBI is speculated to underlie the progression of cognitive dysfunction. However, few studies have uncovered the cellular mechanism regulating axonal impairment. In this study, we showed that after rmTBI, the activation of neuronal p75NTR signaling contributes to abnormal axonal morphology and impaired axonal transport, which further leads to cognitive dysfunction in mice. By neuron-specific knockdown of p75NTR or treatment with p75NTR inhibitor LM11A-31, we observed better recovery of axonal integrity and cognitive function after brain trauma. Further analysis revealed that p75NTR relies on its adaptor protein TRAF6 to activate downstream signaling via TAK1 and JNK. Overall, our results provide novel insight into the role of neuronal p75NTR in axonal injury and suggest that p75NTR may be a promising target for cognitive function recovery after rmTBI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.