Abstract

The original papers of Hodgkin and Huxley (J. Physiol. 116 (1952a) 449, J. Physiol. 116 (1952b) 473, J. Physiol. 116 (1952c) 497, J. Physiol. 117 (1952d) 500) have provided a benchmark in our understanding of cellular excitability. Not surprisingly, their model of the membrane action potential (AP) requires revisions even for the squid giant axon, the preparation for which it was originally formulated. The mechanisms they proposed for the voltage-gated potassium and sodium ion currents, I K, and I Na, respectively, have been superceded by more recent formulations that more accurately describe voltage-clamp measurements of these components. Moreover, the current–voltage relation for I K has a non-linear dependence upon driving force that is well described by the Goldman–Hodgkin–Katz (GHK) relation, rather than the linear dependence on driving force found by Hodgkin and Huxley. Furthermore, accumulation of potassium ions in the extracellular space adjacent to the axolemma appears to be significant even during a single AP. This paper describes the influence of these various modifications in their model on the mathematically reconstructed AP. The GHK and K + accumulation results alter the shape of the AP, whereas the modifications in I K and I Na gating have surprisingly little effect. Perhaps the most significant change in their model concerns the amplitude of I Na, which they appear to have overestimated by a factor of two. This modification together with the GHK and the K + accumulation results largely remove the discrepancies between membrane excitability of the squid giant axon and the Hodgkin and Huxley (J. Physiol. 117 (1952d) 500) model previously described (Clay, J. Neurophysiol. 80 (1998) 903).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.