Abstract

Theiler's murine encephalomyelitis virus (TMEV) and other neurotropic virus infections result in degeneration of each component of the neuron: apoptosis of the cell body, axonal (Wallerian) degeneration, and dendritic and synaptic pathology. In general, axonal degeneration is detrimental for hosts. However, axonal degeneration can be beneficial in the case of infection with neurotropic viruses that spread in the CNS using axonal transport. C57BL/Wld(S) (Wld(S), Wallerian degeneration slow mutant) mice are protected from axonal degeneration. Wld(S) mice infected with the neurovirulent GDVII strain of TMEV are more resistant to virus infection than wild-type mice, suggesting that axonal preservation contributes to the resistance. By contrast, infection with the less virulent Daniels strain of TMEV results in high levels of virus propagation in the CNS, suggesting that prolonged survival of axons in Wld(S) mice favors virus spread. Thus, axonal degeneration might be a beneficial self-destruct mechanism that limits the spread of neurotropic viruses, in the case of less virulent virus infection. We hypothesize that neurons use 'built-in' self-destruct protection machinery (compartmental neurodegeneration) against neurotropic virus infection, since the CNS is an immunologically privileged site. Early induction of apoptosis in the neuronal cell body limits virus replication. Wallerian degeneration of the axon prevents axonal transport of virus. Dendritic and synaptic degeneration blocks virus transmission at synapses. Thus, the balance between neurodegeneration and virus propagation may be taken into account in the future design of neuroprotective therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.