Abstract

The giant axons in Mercierella are overlaid by narrow glial processes which provide an incomplete covering of the axonal surface. Where more complete covering occurs the intercellular clefts are not sealed by tight junctional complexes. Ionic lanthanum penetrates to the surfaces of axons from sea-water-adapted animals (in normal saline and during initial exposure to hyposmotic saline) and, also, to the surface of hyposmotically adapted axons. A relatively free intercellular access to the axon surfaces is also indicated by the rapid electrical responses of sea-water-adapted axons to hyposmotic dilution and of hyposmotically adapted axons to sodium-deficient saline. The giant axon possesses an unusual ultrastructural specialization: hemidesmosome-like structures (associated with the axon membrane) which are connected to a network of neurofilaments within the axon. Theoretical considerations suggest that these structures could enable the axons to withstand appreciable excesses in intracellular hydrostatic pressure resulting from osmotic imbalance during hyposmotic stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.