Abstract
Functional reorganization of brain cortical areas occurs following stroke in humans, and many instances of this plasticity are associated with recovery of function. Rodent studies have shown that following a cortical stroke, neurons in uninjured areas of the brain are capable of sprouting new axons into areas previously innervated by injured cortex. The pattern and extent of structural plasticity depend on the species, experimental model, and lesion localization. In this study, we examined the pattern of axon sprouting in spinal cord after a localized lesion which selectively targeted the primary motor cortex in adult mice. We subjected mice to a stereotaxic-guided photothrombotic stroke of the left motor cortex, followed 2 weeks later by an injection of the neuronal tracer biotinylated dextran amine (BDA) into the uninjured right motor cortex. BDA-positive axons originating from the uninjured motor cortex were increased in the gray matter of the right cervical spinal cord in stroke mice, compared to sham control mice. These results show that axon sprouting can occur in the spinal cord of adult wild-type mice after a localized stroke in motor cortex.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.