Abstract

We studied the ascending and descending axonal trajectories of excitatory vestibular neurons related to the anterior semicircular canal, by means of local stimulation and spike-triggered signal averaging techniques in anesthetized cats. More than 200 vestibular neurons related to the ampullary nerve of the anterior semicircular canal (ACN) were identified as vestibulo-ocular neurons by antidromic stimulation of the contralateral inferior oblique (IO) muscle motoneuron pool. In the descending, medial and ventral lateral nuclei, about 60% of these vestibulo-ocular neurons were also activated antidromically by upper cervical spinal cord stimulation (vestibulo-ocular-collic (cervical) = VOC). These VOC neurons produced unitary EPSPs in the majority of neck extensor motoneurons located at the C1 segment. None of the VOC neurons had axons descending as far as the thoracic level. Most of these VOC neurons were activated monosynaptically following stimulation of the ACN. The conduction velocity of the descending axons of VOC neurons was approximately 63 m/s, which was significantly faster than that of the ascending axons. The remaining 40% of the vestibulo-ocular neurons were not activated antidromically following spinal cord stimulation at intensities of 1 mA or more (vestibulo-ocular = VO). Most of the VO neurons were activated polysynaptically by ACN stimulation. The superior vestibular nucleus contained VO neurons that were activated mono- and polysynaptically following ACN stimulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.