Abstract
AXL is a member of TAM receptor family and has been highlighted as a potential target for cancer treatment. Accumulating evidence has uncovered the critical role of the AXL signaling pathway in tumor growth, metastasis, and resistance against anti-cancer drugs, as well as its association with cancer immune escape. However, the function of AXL as a manipulator of the immune system in the tumor microenvironment (TME) remains unclear. Therefore, in this study, we investigated the impact of AXL on immune cells in the TME of a syngeneic tumor model using AXL knockout (AXL−/−) mice. Compared to AXL wild-type (AXL+/+) mice, tumor growth was significantly suppressed in AXL−/− mice, and an induced population of tumor-infiltrated CD8+ T cells and CD103+ dendritic cells (DCs) was observed. The change of CD8+ T cells and CD103+ DCs was also confirmed in tumor-draining lymph nodes (TdLN). In addition, the clonal expansion of OVA-specific CD8+ T cells was dominant in AXL−/− mice. Finally, anti-PD-1 treatment evidenced synergistic anti-cancer effects in AXL−/− mice. Overall, our data indicate that AXL signaling may inhibit the clonal expansion of tumor-specific CD8+ T cells through the regulation of the migration of CD8+ T cells and DCs in TME. Thus, AXL may be a powerful molecular target to improve anti-cancer effects through single or combined therapy with immune checkpoint inhibitors (ICI).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.