Abstract
Myeloproliferative neoplasms (MPN) are clonal stem cell associated disorders inclusive of chronic myeloid leukemia (CML), Polycythaemia vera (PV), myelofibrosis (MF), and essential thrombocythemia (ET). They are characterized by increased production of myeloid cells with minimal effects on terminal differentiation but can undergo transformation to acute leukemias. PV is the most common chronic myeloproliferative neoplasm and in the majority of cases is characterized by a V617F point mutation in JAK2. This JAK2 activating mutation is also found in about half the patients with MF and ET. Such aberrant proteins offer great potential for the treatment of these diseases however inhibitors to JAK2 have had limited success in the clinic in terms of curing the disease. We have previously used advanced proteomic techniques to identify drug targets and thus develop novel treatment strategies to distinguish the leukemic clone in both CML and PV. Here, we build on our proteomic data sets to characterize a new target, the receptor tyrosine kinase AXL. AXL is overexpressed in acute myeloid leukemia and importantly small molecule inhibitors have been developed which are currently in clinical trial hence offer the opportunity to repurpose this drug for the treatment of MPNs. We demonstrate that AXL is upregulated and activated in JAK2 associated MPNs. Further we show that inhibition of AXL preferentially kills early hemopoietic stem cells from PV patients and as such represents a promising therapeutic approach for JAK2 driven MPNs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.