Abstract
We solve an axisymmetric problem of the interaction of harmonic waves with a thin elastic circular inclusion located in an elastic isotropic body (matrix). On both sides of the inclusion, between it and the body (matrix), conditions of smooth contact are realized. The method of solution is based on the representation of displacements in the matrix in terms of discontinuous solutions of Lame equations for harmonic vibrations. This enables us to reduce the problem to Fredholm integral equations of the second kind for functions related to jumps of normal stress and radial displacement on the inclusion.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.