Abstract

The axisymmetric hypothesis of the earplug-ear canal system geometry is commonly used. The validity of this hypothesis is investigated numerically in the case of a simplified configuration where the system is embedded in a rigid baffle and for fixed boundary conditions on the earplug lateral walls. This investigation is discussed for both individual and averaged insertion loss predictions of molded silicon earplugs. The insertion losses of 15 earplug-ear canal systems with realistic geometries are calculated using three-dimensional (3D) finite element models and compared with the insertion losses provided by two-dimensional equivalent axisymmetric finite element models using 6 different geometry reconstruction methods [all the models are solved using COMSOL Multiphysics (COMSOL, Sweden)]. These methods are then compared in order to find the most reliable ones in terms of insertion loss predictions in this simplified configuration. Two methods have emerged: The usage of a variable cross section (with the same area values as the 3D case) or the usage of a constant cross section (with the same length and volume as the 3D case).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.