Abstract
Separable solutions admitted by a nonlinear partial differential equation modeling the axisymmetric spreading under gravity of a thin power-law fluid on a horizontal plane are investigated. The model equation is reduced to a highly nonlinear second-order ordinary differential equation for the spatial variable. Using the techniques of Lie group analysis, the nonlinear ordinary differential equation is linearized and solved. As a consequence of this linearization, new results are obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.