Abstract

The dynamics of the formation of the axisymmetric meniscus around a cone contacting a free liquid surface are discussed. An approximate phenomenological model is set up. In the case considered, where Re [Lt ] 1 and viscosity dominates the retarding forces, this leads to a differential equation relating the height of the circle of contact to time. Solutions are derived, involving one or more unknown parameters, which describe the time dependence of the height of the circle of contact.Experimental data, obtained from delayed flash photographs of the meniscus profiles of silicone fluid climbing over the surface of glass cones, provide general support for the model. The agreement between the predicted and observed height as a function of time is sufficiently close to justify the model as a useful description.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.