Abstract

Droplet-solid interaction is a ubiquitous fluid phenomenon that underpins a wide range of applications. To further the understanding of this important problem, we use an axisymmetric lattice Boltzmann method (LBM) to model the droplet impact on a solid surface with different wettability. The method applies a popular free-energy LBM developed by Lee and Liu [T. Lee and L. Liu, J. Comput. Phys. 229, 8045 (2010)10.1016/j.jcp.2010.07.007] to simulate incompressible binary fluids with physical density and viscosity contrasts. The formulation is recast in cylindrical coordinates for modeling the normal impact of a three-dimensional (3D) droplet in the no-splashing regime, in which an axisymmetric flow is considered. The droplet deposits on or rebounds from the surface, governed by three key parameters: Weber number, Ohnesorge number, and equilibrium contact angle, which quantifies the surface wettability. We elucidate the distinct impact dynamics by probing droplet morphology and contact line behavior in great detail, which are quantitatively characterized by spreading factor, droplet aspect ratio, and dynamic contact angle. The simulations also resolve fluid velocity field inside and outside the droplet, which provides additional insight into the morphological evolution and mass-momentum transfer during impact. Explicit comparison between axisymmetric and conventional 2D LBM highlights the importance of axisymmetric terms in governing equations for reproducing physical impact behavior. The axisymmetric LBM significantly reduces computational cost as compared with 3D LBMs and offers an effective means to study droplet impact in applicable conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call