Abstract

An interaction problem is formulated for a spherical body oscillating in a prescribed manner inside a thin elastic cylindrical shell filled with a perfect compressible liquid and submerged in a dissimilar infinite perfect compressible liquid. The geometrical center of the sphere is on the cylinder axis. The solution is based on the possibility of representing the partial solutions of the Helmholtz equations written in cylindrical coordinates for both media in terms of the partial solutions written in spherical coordinates, and vice versa. Satisfying the boundary conditions on the sphere and shell surfaces results in an infinite system of linear algebraic equations. This system is used to determine the coefficients of the Fourier-series expansions of the velocity potentials in terms of Legendre polynomials. The hydrodynamic characteristics of both liquids and the shell deflections are determined. The results obtained are compared with those for a sphere oscillating on the axis of an elastic cylindrical shell filled with a compressible liquid (the ambient medium being neglected).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call