Abstract
Abstract This paper is devoted to the global analysis of the three-dimensional axisymmetric Navier–Stokes–Maxwell equations. More precisely, we are able to prove that, for large values of the speed of light $c\in (c_0, \infty )$ , for some threshold $c_0>0$ depending only on the initial data, the system in question admits a unique global solution. The ensuing bounds on the solutions are uniform with respect to the speed of light, which allows us to study the singular regime $c\rightarrow \infty $ and rigorously derive the limiting viscous magnetohydrodynamic (MHD) system in the axisymmetric setting. The strategy of our proofs draws insight from recent results on the two-dimensional incompressible Euler–Maxwell system to exploit the dissipative–dispersive structure of Maxwell’s system in the axisymmetric setting. Furthermore, a detailed analysis of the asymptotic regime $c\to \infty $ allows us to derive a robust nonlinear energy estimate which holds uniformly in c. As a byproduct of such refined uniform estimates, we are able to describe the global strong convergence of solutions toward the MHD system. This collection of results seemingly establishes the first available global well-posedness of three-dimensional viscous plasmas, where the electric and magnetic fields are governed by the complete Maxwell equations, for large initial data as $c\to \infty $ .
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.