Abstract

The frequencies of free vibration and mode shapes are calculated for axisymmetric modes of an elastic cylinder of finite length having hexagonal symmetry with the crystallographic c-axis coincident with the axis of the cylinder (a transversely isotropic finite cylindrical rod). A series solution is used which satisfies term-by-term the differential equations of linear elasticity and the boundary conditions on the shear stress; the boundary conditions on the normal stresses are satisfied by using an orthogonalization procedure. As an example, the method is applied to sapphire, with one of the six elastic constants (c14) taken to be zero. The other five elastic constants are those of the hexagonal system. The calculated acoustic vibration frequencies agree to better than 1 percent with measurements made on sapphire at room temperature, for a cylinder of half-height to radius ratio ∼ 1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.