Abstract

The motion of a viscous thread surrounded by an annular viscous layer inside a pulsating cylindrical pipe whose radius is a periodic function of time is investigated. At zero Reynolds number, a stagnation-point-type solution may be written down in closed form. A Floquet linear stability analysis for Stokes flow reveals the pulsations either decrease or increase the growth rate of longwave disturbances depending on the initial radius of the thread. For a moderate-sized initial thread radius, increasing the amplitude of the pulsations decreases the critical wavenumber for instability to below the classical Rayleigh threshold. Increasing the viscosity contrast, so that the fluid in the annular layer becomes more viscous than the fluid in the thread, tends to decrease the growth rate of disturbances. In the second part of the paper, the basic stagnation-point-type flow at arbitrary Reynolds number is computed using a numerical method on the assumption that the interface is a circular cylinder at all times. During the motion, either the thread radius tends to increase and the thickness of the annular layer decreases, or else the thread tends to thin and the thickness of the annular layer increases, depending upon the initial conditions and the parameter values. For a judicious choice of initial condition, a time-periodic exact solution of the Navier–Stokes equations is identified.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.